Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Elife ; 122023 04 20.
Article in English | MEDLINE | ID: covidwho-20236082

ABSTRACT

We sought to define the mechanism underlying lung microvascular regeneration in a model of severe acute lung injury (ALI) induced by selective lung endothelial cell ablation. Intratracheal instillation of DT in transgenic mice expressing human diphtheria toxin (DT) receptor targeted to ECs resulted in ablation of >70% of lung ECs, producing severe ALI with near complete resolution by 7 days. Using single-cell RNA sequencing, eight distinct endothelial clusters were resolved, including alveolar aerocytes (aCap) ECs expressing apelin at baseline and general capillary (gCap) ECs expressing the apelin receptor. At 3 days post-injury, a novel gCap EC population emerged characterized by de novo expression of apelin, together with the stem cell marker, protein C receptor. These stem-like cells transitioned at 5 days to proliferative endothelial progenitor-like cells, expressing apelin receptor together with the pro-proliferative transcription factor, Foxm1, and were responsible for the rapid replenishment of all depleted EC populations by 7 days post-injury. Treatment with an apelin receptor antagonist prevented ALI resolution and resulted in excessive mortality, consistent with a central role for apelin signaling in EC regeneration and microvascular repair. The lung has a remarkable capacity for microvasculature EC regeneration which is orchestrated by newly emergent apelin-expressing gCap endothelial stem-like cells that give rise to highly proliferative, apelin receptor-positive endothelial progenitors responsible for the regeneration of the lung microvasculature.


Subject(s)
Acute Lung Injury , Transcriptome , Mice , Animals , Humans , Apelin/metabolism , Apelin Receptors/metabolism , Lung , Mice, Transgenic , Endothelial Cells/metabolism
2.
iScience ; 26(6): 106937, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2324945

ABSTRACT

T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.

3.
Elife ; 122023 04 18.
Article in English | MEDLINE | ID: covidwho-2327355

ABSTRACT

Proinflammatory agonists provoke the expression of cell surface adhesion molecules on endothelium in order to facilitate leukocyte infiltration into tissues. Rigorous control over this process is important to prevent unwanted inflammation and organ damage. Protein L-isoaspartyl O-methyltransferase (PIMT) converts isoaspartyl residues to conventional methylated forms in cells undergoing stress-induced protein damage. The purpose of this study was to determine the role of PIMT in vascular homeostasis. PIMT is abundantly expressed in mouse lung endothelium and PIMT deficiency in mice exacerbated pulmonary inflammation and vascular leakage to LPS(lipopolysaccharide). Furthermore, we found that PIMT inhibited LPS-induced toll-like receptor signaling through its interaction with TNF receptor-associated factor 6 (TRAF6) and its ability to methylate asparagine residues in the coiled-coil domain. This interaction was found to inhibit TRAF6 oligomerization and autoubiquitination, which prevented NF-κB transactivation and subsequent expression of endothelial adhesion molecules. Separately, PIMT also suppressed ICAM-1 expression by inhibiting its N-glycosylation, causing effects on protein stability that ultimately translated into reduced EC(endothelial cell)-leukocyte interactions. Our study has identified PIMT as a novel and potent suppressor of endothelial activation. Taken together, these findings suggest that therapeutic targeting of PIMT may be effective in limiting organ injury in inflammatory vascular diseases.


Subject(s)
Lipopolysaccharides , Protein D-Aspartate-L-Isoaspartate Methyltransferase , TNF Receptor-Associated Factor 6 , Animals , Mice , Endothelial Cells/metabolism , Endothelium/metabolism , Lipopolysaccharides/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism
4.
iScience ; 26(5): 106601, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2306660

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks multiple human proteins during infection and viral replication. To examine whether any viral proteins employ human E3 ubiquitin ligases, we evaluated the stability of SARS-CoV-2 proteins with inhibition of the ubiquitin proteasome pathway. Using genetic screens to dissect the molecular machinery involved in the degradation of candidate viral proteins, we identified human E3 ligase RNF185 as a regulator of protein stability for the SARS-CoV-2 envelope protein. We found that RNF185 and the SARS-CoV-2 envelope co-localize to the endoplasmic reticulum (ER). Finally, we demonstrate that the depletion of RNF185 significantly increases SARS-CoV-2 viral titer in a cellular model. Modulation of this interaction could provide opportunities for novel antiviral therapies.

5.
Biosciences, Biotechnology Research Asia ; 19(3):561-577, 2022.
Article in English | CAB Abstracts | ID: covidwho-2264583

ABSTRACT

Legionnaires' disease (LD) is a type of severe pneumonia that mainly caused by bacteria of the genus Legionella. LD bacteria reside in the water systems of facilities where lack of water exchange or flow plays a crucial role in enhancing bacterial growth. The under-recognition of the dangers of Legionella along with easing of Coronavirus disease 2019 (COVID-19) lockdown restrictions and global reopening, pose a potential increased risk of developing LD. Various Legionella species can lead to legionellosis infections, including LD and Pontiac fever. Legionellosis cases is generally found in natural or artificial aquatic environments such as cooling towers, hot water tanks, or air conditioning. The bacteria elude the host's immune responses by various strategies, including releasing effector proteins. Thus, this review provides insight into the microbiology, epidemiology, and host cell biology of L. pneumophila, as well as an emphasis on the bacterial novel survival strategies of L. pneumophila. Also, suggests taking intensive actions towards closed buildings as a potential source of bacterial infection.

6.
STAR Protoc ; 4(2): 102171, 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2288848

ABSTRACT

Here, we detail the immunization of mice with a sublethal dose of MERS-CoV or two doses of replication-incompetent alphavirus replicon particles expressing MERS-CoV spike protein. We then describe steps to determine the outcome of immunization by challenging immunized mice with a lethal dose of MERS-CoV, as well as by detecting virus-specific neutralizing antibody and virus-specific T cell response via neutralization assay and flow cytometry, respectively. This protocol can be used to evaluate other CoV infections or vaccine-induced immune responses. For complete details on the use and execution of this protocol, please refer to Zheng et al. (2021).1.

7.
STAR Protoc ; 4(2): 102189, 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2266320

ABSTRACT

Here we present a protocol to measure coronavirus-mediated membrane fusion, an essential event in coronavirus cell entry. The approach uses nanoluciferase (Nluc) "HiBiT"-tagged corona virus-like particles (VLPs) and Nluc "LgBiT"-containing extracellular vesicles (EVs) as proxies for virus and cell, respectively. VLP-EV membrane fusion allows HiBiT and LgBiT to combine into measurable Nluc, which signifies virus fusion with target cell membranes. We highlight assay utility with methods to assess coronavirus-mediated fusion and its inhibition by antibodies and antiviral agents. For complete details on the use and execution of this protocol, please refer to Qing et al. (2021),1 Qing et al. (2022),2 and Marcink et al. (2022).3.

8.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: covidwho-2256062

ABSTRACT

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here - using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures - we show that hypercapnia limits ß-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize ß-catenin signaling, thereby limiting progenitor function. Constitutive activation of ß-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.


Subject(s)
Hypercapnia , Wnt Signaling Pathway , Mice , beta Catenin/metabolism , Cell Proliferation , COVID-19/complications , Hypercapnia/metabolism
9.
Med J Aust ; 217(2): 65-70, 2022 07 18.
Article in English | MEDLINE | ID: covidwho-2274622
10.
Circulation Research ; 131, 2022.
Article in English | Web of Science | ID: covidwho-2239899
11.
STAR Protoc ; 4(1): 101977, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2240057

ABSTRACT

The protocol is designed to investigate the influence of an anti-cleavage site intrabody in modulating the output of LV(CoV-2 S), a lentivirus-based pseudovirus expressing CoV-2 S protein using HEK293T cells. We clone the single-domain antibody sequence into a lentiviral vector (pLenti-GFP) for intracellular expression and assess not only the viral biogenesis but also the fate of the CoV-2 S protein in such cells. For complete details on the use and execution of this protocol, please refer to Singh et al. (2022).1.

12.
Elife ; 122023 01 27.
Article in English | MEDLINE | ID: covidwho-2226145

ABSTRACT

Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930.


Subject(s)
COVID-19 , Fenofibrate , Humans , Fenofibrate/therapeutic use , Lipids , PPAR alpha , Prospective Studies , SARS-CoV-2 , Treatment Outcome
13.
Elife ; 122023 01 25.
Article in English | MEDLINE | ID: covidwho-2217494

ABSTRACT

Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.


Subject(s)
Oxysterols , Zika Virus Infection , Zika Virus , Animals , Humans , Mice , Oxysterols/metabolism , Acyltransferases/metabolism , Cholesterol/metabolism , Cell Membrane/metabolism , Bacteria/metabolism
14.
iScience ; 25(11): 105444, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2179830

ABSTRACT

SARS-CoV-2, the causative agent of the present COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome, and some have been implicated in facilitating infection and pathogenesis through their interaction with cellular components. Among these proteins, accessory protein ORF7a and ORF7b functions are poorly understood. In this study, A549 cells were transduced to express ORF7a and ORF7b, respectively, to explore more in depth the role of each accessory protein in the pathological manifestation leading to COVID-19. Bioinformatic analysis and integration of transcriptome results identified defined canonical pathways and functional groupings revealing that after expression of ORF7a or ORF7b, the lung cells are potentially altered to create conditions more favorable for SARS-CoV-2, by inhibiting the IFN-I response, increasing proinflammatory cytokines release, and altering cell metabolic activity and adhesion. Based on these results, it is plausible to suggest that ORF7a or ORF7b could be used as biomarkers of progression in this pandemic.

15.
Elife ; 112022 12 20.
Article in English | MEDLINE | ID: covidwho-2203161

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases.


Subject(s)
COVID-19 , Erythrocyte Deformability , Humans , Proteomics , SARS-CoV-2 , Erythrocytes/physiology
16.
iScience ; 26(1): 105748, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2149915

ABSTRACT

Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death markers in patients with COVID-19 revealed that COVID-19-induced ARDS was characterized by alveolar epithelial necrosis at an early disease stage. Serum levels of HMGB-1, one of the DAMPs released from necrotic cells, were also significantly elevated in these patients. Further analysis using a mouse model mimicking COVID-19-induced ARDS showed that the alveolar epithelial cell necrosis involved two forms of programmed necrosis, namely necroptosis, and pyroptosis. Finally, the neutralization of HMGB-1 attenuated alveolar tissue injury in the mouse model. Collectively, necrosis, including necroptosis and pyroptosis, is the predominant form of alveolar epithelial cell death at an early disease stage and subsequent release of DAMPs is a potential driver of COVID-19-induced ARDS.

17.
J Pathol Inform ; 14: 100161, 2023.
Article in English | MEDLINE | ID: covidwho-2122637

ABSTRACT

Background: This article describes how a simple slide scanner with remote viewing software enabled a remote "nomadic" pathologist to continue his role as specialist lead for a regional gastrointestinal multidisciplinary team meeting (MDTM) after relocating to another site in the 5 hospital Southwest UK Peninsula cancer network just prior to the COVID-19 pandemic. Materials and methods: The author used digital pathology (DP) to supplement a conventional workflow as a way of minimising delay in reporting and reviewing slides for a regional specialist Oesophagogastric MDTM (the OGSMDT). The specialist centre at University Hospital Plymouth (UHP) is 58 miles from the author's new workplace at Royal Cornwall Hospital (RCHT). Slides from the 44 cases (10% of this specialist annual workload) in this validation study were reported or reviewed digitally using the slide scanner. All were listed for the OGSMDT due to being clinically suspicious for upper gastrointestinal malignancy, having been processed at UHP, or one of the other hospitals in the cancer network. Results: The scanner allowed the author who was only on site at UHP 1 day per week to prevent delays in reporting/reviewing glass slides, using remote DP. Confidence in digital diagnosis was assessed using the Royal College of Pathologists recommendations. The author was the primary pathologist signing out 31, and second opinion for the remaining 13 cases. These comprised a mixture of biopsies as well as endoscopic and surgical excision specimens. The DP system enabled the author to report the cases digitally with an equivalent degree of confidence to glass slides and no significant discrepancies were identified between the author's digital and final glass slide diagnosis. Conclusions: The scanner was found to be safe and effective for remote reporting and review for OGSMDT cases. It was recognised that DP was advantageous to enable this role to continue remotely but that a fully integrated digital reporting system capable of high-capacity scanning would be preferable to the simple system used.

18.
STAR Protoc ; 3(4): 101802, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2106168

ABSTRACT

Here, we present a protocol to characterize the antiviral ability of a protein of interest to SARS-CoV-2 infection in cultured cells, using MUC1 as an example. We use SARS-CoV-2 ΔN trVLP system, which utilizes transcription and replication-competent SARS-CoV-2 virus-like particles lacking nucleocapsid gene. We describe the optimized procedure to analyze protein interference of viral attachment and entry into cells, and qRT-PCR-based quantification of viral infection. The protocol can be applied to characterize more antiviral candidates and clarify their functioning stage. For complete details on the use and execution of this protocol, please refer to Lai et al. (2022).


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Nucleocapsid , Cell Line , Antiviral Agents/pharmacology
19.
iScience ; 25(12): 105479, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2095532

ABSTRACT

The repetitive applications of vaccine boosters have been brought up in face of continuous emergence of SARS-CoV-2 variants with neutralization escape mutations, but their protective efficacy and potential adverse effects remain largely unknown. Here, we compared the humoral and cellular immune responses of an extended course of recombinant receptor binding domain (RBD) vaccine boosters with those from conventional immunization strategy in a Balb/c mice model. Multiple vaccine boosters after the conventional vaccination course significantly decreased RBD-specific antibody titers and serum neutralizing efficacy against the Delta and Omicron variants, and profoundly impaired CD4+ and CD8+T cell activation and increased PD-1 and LAG-3 expressions in these T cells. Mechanistically, we confirmed that extended vaccination with RBD boosters overturned the protective immune memories by promoting adaptive immune tolerance. Our findings demonstrate potential risks with the continuous use of SARS-CoV-2 vaccine boosters, providing immediate implications for the global COVID-19 vaccination enhancement strategies.

20.
STAR Protoc ; 3(4): 101853, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2086851

ABSTRACT

The SARS-CoV-2 envelope (E) protein hijacks human BRD4 (bromodomain and extra-terminal domain protein 4). Here, we describe a protocol to characterize the interaction of the acetylated E protein with BRD4 in vivo. We detail steps to use NMR spectroscopy to map the binding interface and include steps to monitor the effect of BRD4 inhibitors in SARS-CoV-2-infected human lung bronchial epithelial cells. This approach could be applied to study interactions involving other viral and human proteins. For complete details on the use and execution of this protocol, please refer to Vann et al. (2022).1.


Subject(s)
COVID-19 , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , SARS-CoV-2/metabolism , Cell Cycle Proteins , Transcription Factors/metabolism , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL